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I. INTRODUCTION

Directional hydrophone arrays are often used to determine the physical

attributes of a distant source or reflector of acoustic waves. Although the

range, velocity, and bearing of the target are often of greatest interest,

in many cases it is important to learn as much as possible about its geometric
structure, and to determine its precise bearing angle and depression-

elevation angle with respect to background objects. A single beamformer
may be used for this purpose, but better results can often be obtained by

using two beamformers, for example, one having a sharp peak and the other

a null at broadside.

Complementary beams have long been known to be useful for precision

acoustic or radio direction finding.1 Although more sophisticated tech-
niques have been developed in recent years,2'3 2-beam techniques still have

value. They provide a resource that has not yet been exhausted, particularly

with regards to broadband signals, and they are much more amenable to

performance prediction than other techniques.

In this paper, some familiar 2-beam techniques are extended to the

broadband case. In particular, the amplitude comparison concept is

extended to a scale comparison method that is applicable to signals of

arbitrary spectra and angles of incidence. Moreover, several' new results

are given that are of interest even in the single frequency case. In

contrast to most recent studies, two outputs are produced that are related

by a simple proportionality rule rather than by a time delay. This

approach makes it possible to use simpler statistical models for the

corrupting effects of multipath distortion or complexities of target

structure. An appendix is included on phase front distortion as it affects

estimates of wave source direction.



The report is written in tutorial style, but it contains several

new results and.methods. We begin with a review of some basic properties

of arrays as seen from A signal processing point of view.
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II. SIGNAL PROCESSING CHARACTERISTICS
OF A LINE ARRAY BEAMFORMER

Suppose a plane wave, not necessarily sinusoidal, arrives at angle

e as shown in Fig. 1. Note that e is the angle between the wavefront

and the positive x-axis as well as the angle by which the wave source is

displaced from broadside aspect. If the instantaneous acoustic pressure

at the origin is p(t), then at an arbitrary point along the x-axis, its

measured value must be p[t-(x/c)sine], where c is the speed of propaga-

tion. Suppose a receiving aperture with aperture shading function w(x)

is used to sense the wave field along the x-axis so as to produce an

output

q(t) =JW(X)p(t sine) dx (1)

(Integrals with unlabeled limits will be assumed to extend over the range

-- to +4.) The aperture shading function w(x) may be effected by the

physical characteristics of the receiving transducers, by electronic cir-

cuitry, by digital computation, or by a combination of those methods.

In any case, the entities that perform the spatial integration of Eq. (8)

will be collectively referred to as a beamformer. Used here, this term

does not include beamsteering, a processing task that will be neglected

in our treatment.

For an aperture of finite length, the function w(x) is zero outside

some finite region, and the integration limits can be collapsed to that

domain if desired. The shading function w(x) is permitted to take nega-

tive values, but the integral of its magnitude must be finite. In the

case of a receiving array composed of a finite number of point

3
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transducers, w(x) is just a series of impulses. If we substitute kt for

t in Eq. (1), with k defined as c1 sine, the result is

q(ýt) Jfw(x) p[k(t-x)] dx = w(t) * p(kt) (2)

where * denotes convolution. But convolutions obey the following scaling

property, as can easily be verified: if f(t)=g(t)*h(t), then

f(at) = jai g(at) * h(at) . (3)

Application of this property to Eq. (2) with 1/k as the scalar a and

q(kt) as f(t) gives the result

q(t) = wo(t) *Op(t) , (4)

where the temporal aperture function for direction e is defined as

"w"t (5)~~I we~t : w W ti

This new function may be visualized as an area-preserving projection of

w(x) onto a t-axis that is directed along the path of wave propagation

(see Fig. 2). The Fourier transforms of w(t) and w (t) must then obey

the relationship W6 (f)=WW(f/c)sine]. Furthermore, We(f) has the constant
value Mo when O=O, where Mo is the area under the curve described by w(x),

i.e., it is the "zeroth" moment integral of the aperture shading function.

Equation (4) gives the time domain representation of the signal pro-

cessing function of the beamformer. Taking the Fourier transform gives

QMf W Mf P(f) W si ne) Pmf (6)
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which is the frequency domain representation of the beamformer's signal

processing behavior. On the other hand, if Eq. (1) is attacked by

expanding p[t-(x/c)sine] in a power series, i.e.,

xpt - - sine) = p(t) - sine ( ... + (7)

then the result is

q(t) Mop(t) - sine(Ml/c) k(t) + ... , (8)

where the nth term in the series is

M
n -(slnn)n c-n p(n)(t) , (9)

with Mn being the nth moment integral of the aperture,

Mn A fxn w(x) dx (10)

Note that the definition of Mo is consistent with that given previously,

and W(O)=Mo. Equation (8) gives the derivative series representation

for the signal processing behavior of the beamformer. An important con-

sequence of this representation is that as e approaches zero (broadside

aspect) the output becomes like MoP(t), which means that if MemO then the

dominant term has no first order dependence upon o. On the other hand,
if Mo=O and MIj Othen the dominant term in the output is
(M/Ckt) sine z (-Ml/c)ý(t)e. The resulting first order dependence up-

on e of the dominant term makes this type of beamformer useful for esti-

mating the direction of plane waves arriving at near-broadside aspect,

if the derivative-taking action of the array is taken into account.

7
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To emphasize the directional characteristic of the output at a

particular frequency f0, it is useful to rewrite Eq. (6) in the form

Q(fO ) = K(e,f ) P(f ) , (11)

where K(e,fo) is the directivity function for frequency fo,

K(e,fo) 0 W[(f 0 /c)sine] (12)

This complex function relates the amplitude and phase of the output com-

ponent at frequency f0 to that of the incident pressure wave p(t). In

particular, if p(t) is a pure sinusoid, i.e.,

IJ27rf 0tip(t) = ,.: PeJ2f t (13)

where P is the complex phase amplitude factor, then

P(f) = 1/2[P6(f-fo) + P 8(f+f0 )] (14)

which, after substituting into Eq. (6) and taking inverse transforms,

leads to

q(t) = Re Qe j (15)

where

Q A K(e,f )P. (16)

Equation (16), used here to define the beamformer output phaser Q,
•i might also be regarded as a working definition of the directivity func-

tion K(e,f ), given in terms of the complex envelope of the beamformer

output for an incident sinusoidal wave. The directivity function is often
S~expressed with its broadside value normalized, i.e., as K(o,fo)/Mo, in

8



the literature. But this cannot be done if M0=O, i.e., If the area

under w(x) is zero, so that the directivity pattern has a null at broad-

side, and therefore no normalization will be applied here.

It is worth pointing out that Eq. (12) underpins the following well-
known interpretation of spectral transforms: any graphical compendium

of Fourier transforms may be regarded as a compendium of directivity
functions if one merely marks the frequency axis according to the non-

linear angular scale e=arcsin(cf/f ), where f is the frequency variable
0

in the graphical representation of the transform. One needs only that

part of the plot for which tcf/fol<l, i.e., Ifk<fo/c.

iiI
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III. SYMMETRY PROPERTIES

Suppose an aperture shading function w(x) has even symmetry,

w(x)=w(-x). Then its odd moment integrals MV,M3 ,..., vanish, which
implies via the derivative series representation of Eq. (8) that the

beamformer output must be composed of p(t) and its even derivatives,

with only even powers of e. The Fourier transform of w(x) is lecessarily

real-even, which means the directivity function K(e,f ) is real valued
and possesses even symmetry with respect to both of the variables e and

fo. The beamformer output carries no information as to the sign of e,

, !and all of its sinusoidal components are in phase (allowing for reversed

sign) with those of the acoustic pressure at the origin. At broadside

aspect the output is relatively insensitive to small variations in the

angle of the incidence, exhibiting only a second order dependence on 0.

By similar reasoning, a shading function with odd symmetry,

w(x)=-w(-x), has M0=M2 =,...,=O, so its output q(t) is composed of only

odd derivatives of p(t) with odd powers of e, and the Fourier transform

of w(x) is imaginary-odd. The directivity function K(e,f ) displays odd
symmetry with respect to o and fo. The beamformer output reverses in sign

whenever the direction angle e crosses broadside aspect, and at broadside
displays a first order sensitivity to o that is determined by the size of

the first moment integral M1. Every sinusoidal component of the beamformer

output q(.t) is 900 out of phase with its antecedent component in the

incident wave pressure p(t), with the direction of that phase shift

* depending upon the sign of e.

Since the odd or even symmetry of the aperture shading function

implies a similar symmetry in the directivity function, the terms

"odd beamformer" or "even beamformer" are entirely appropriate.



IV. TEMPORAL INTEGRATION OF BEANFORMER OUTPUT

Equations (4) and (5) can be combined to express the beamformer

output more directly for a general aperture shading w(x),

q(t) -- k I w(t/k) * p(t) , (17)

where k-c' sin as before. Now suppose q(t) is integrated from -® to

t by an operational amplifier circuit. This temporal integration can be

symbolically represented as u(t)*q(t), where u(t) is the unit step

function. But

u(t) * q(t) - 1kl- u(t) * w(t/k) * p(t)

- 1kl- f(t) * p(t), (18)

where f(t) _ u(t)*w(t/k). Moreover, the convolution scaling property of
Eq. (3) implies that f(kt)--klu(kt)*w(t). If we define a new aperture

shading function

w W(X) sgn(k) u(kx) * w(x) , (19)

then f(t)=kw (t/k) which, when substituted into Eq. (18), gives
c

u(t) * q(t) k kV" w c(t/k) * p(t) . (20)

Except for the multiplicative factor k, the right-hand side of this

t equation has the same form as that of Eq. (17), which means we can rewrite

(J it in the equivalent form of Eq. (1),

I



u(t) * q(t) k wc(x) p t ".sin dx (21)

The upshot is that whenever the output of a beamformer having aperture

shading w(x) is passed through an integrating circuit, the resulting signal

is identical to what would have been produced by the companion beamformer

whose aperture shading w c(x) is defined in Eq. (19), except that it is

multiplied by k-c-lsine. Although the definition of wc(x) would seem to

depend on the angle of arrival through its dependence upon koc Isine, it

really depends only on the sign of e, since u(kx)-u(x) if k>O, and

u(kx)=l-u(x) if k<O. It follows that

x

w (x)= f w(x)dx (22)

if e>O, but
+C0

wc (X) -- w(x) dx (23)

if e<O.

If w(x) has odd symmetry, then these two formulas are completely

equivalent. Thus to any odd beamformer one can associate a unique, even,

companion beamformer whose aperture shading function is just the integral

of the odd-symmetric function w(x) from -- to x. Odd and even aperture

shading functions having this relationship are said to satisfy the "Kerr-

Murdock conditions" in the antenna literature. 4 ' 5 ' 6  For a given odd-

symmetric shading function, the corresponding even-symmetric shading

function so formed will be termed the K-M companion, denoted wKM(x).

Equation (21) makes it possible to determine the performance of an
odd beamformer from that of a hypothetical even beamformer. The directional
characteristics of an even-symmetric aperture are much more familiar to

array designers, and to make the transition to an odd beamformer it is

14



only necessary to integrate its aperture shading to get the even-

symmietric aperture shading of its K-M companion even beamformer, whose
directional characteristics will exactly predict those of the odd beam-

former except for a temporal integration (which applies a 900 phase

shift to each sinusoidal wave component) and a multiplicative factor

kuc-lsine (which gives the beamformer its characteristic odd-symmetric

directivity function).

A more important application of this result, however, lies in the

design of beamformers for precision direction finding.

I
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V. DIRECTION FINDING BY TRANSFORMS

The Fourier transform relationship between the beamformer output

q(t) and the incident wave, represented by the acoustic pressure at the

origin, is given by Eq. (6), repeated here for convenience:

Q(f) M P(f) W sin (24)

Since q(t) is measured, c is a physical constant, and w(x) is a designer's

choice, the only unknowns implicit in Eq. (24) are the incident waveform

* p(t) and its angle 8. For the rest of this report we shall be concerned

with determining the incident wave angle 0.

If p(t) could somehow be divined, then the three transforms Q(f),

W(f), and P(f) would need to be computed only once, and e could be found

to achieve equality in Eq. (24). But in practice p(t) is never known
beforehand. Even if it is produced as a reflection of a known projected

wave (i.e., by active sonar) or by a distant transmitter of known output,
then at best one knows p(t)=Ap (t-a), where po(t) is known but a and A

00
are unknown. Recalling that the magnitude of a Fourier transform is
invariant with respect to a time shift, we may conclude from Eq. (24)

that

IQ(f)J = IAI IPo(f)i Iw sine) I (25)

which may be amenable to solving for e. Since there are two unknowns,

IAI and the incident wave angle e, it is essential to treat at least two

j frequencies. Unfortunately, the solution for o will be ambiguous as to

17



sign, since IW(f)I is an even function when w(x) is real, but the

information gained about e may be useful despite that shortcoming.

The "phase-ignorant" method described above may have some

applications, but it is far better to use two beamformers having differ-

ent aperture shading functions, wl(x) and w2 (x), that spatially integrate

the acoustic field simultaneously along the same measurement axis. In
practice, this may be achieved by using two sets of shading resistors for

the same array of transducers, by placing two arrays end to end (or even

side by side as an approximation), splitting an existing array at the

middle, processing the individual transducer outputs in a computer, or

by a variety of other means. Thus two outputs, ql(t) and q2 (t), can be

produced, giving two transform equations of the form of Eq. (24), from

which the common term P(f) can be eliminated, leaving

Ql(f) W2(f sine) = Q2 (f)Wl( sine) (26)

which may be solved for e.

This computational transform method for direction finding can be

summarized as follows. The two beamformer outputs q1 (t) and q2 (t) are

Fourier transformed to get QY(f) and Q2 (f), which may be evaluated at

some set of discrete frequencies (hence, a fast Fourier transform is

acceptable). In order to test Eq. (26) for equality at different values

of e, the Fourier transforms, Wl(f) and W2 (f), of the shading functions

must be computed with (f/c)sin9 substituted for f. This is most easily

done if W1 (f) and W2 (f) have relatively simple functional forms comprising

algebraic and/or elementary transcendental functions. Then e can be

adjusted to minimize the error of Eq. (26) over an appropriate range of

frequencies by any of various criteria, such as minimizing the magnitude-

squared equation error. The use of just a single frequency may be

sufficient.

18
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Although this method seems straightforward enough, its success will
hinge upon such factors as the dissimilarity of the two beamformers, the
distribution of signal energy in the frequency spectrum, and the effects

of the windowing that are inevitable when computing the Fourier trans-

forms of the beamformer outputs. Just how these factors will affect the

results is difficult to determine.

There are ways, however, to extract e directly from a pair of

beamformer outputs. These methods are highly structured and have a more

easily predicted performance than the computational transform method.

They rely upon the use of specific choices for the aperture shading

functions w1 (x) and w2 (x), or upon restrictive assumptions concerning

p(t) (e.g., that it is sinusoidal). The balance of this report will be

devoted to a study of these methods. However, one should keep in mind

that, after performance predictions have been made, there is always the

option of analyzing the beamformer output using the computational trans-

form method just described, and perhaps of capitalizing upon the beam-

former structure to improve the computational accuracy or to compensate

for known imperfections in beamfonitng.

i
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VI. DIRECTION FINDING BY TIME COMPARISON

If the aperture weighting functions of a pair of beamfomers are
related by an axial shift, wl(x)=w2 (x-A), then the beamformer outputs

exhibit a differential time shift, ql(t)=q2 (t-Asine/c), as may be verified
by expressing ql(t) in the integral form of Eq. (1) and changing the

variable of integration to x'=x-A. Such beamformers may be termed time

comparison beamformers since the direction angle e of the incident plane
wave reveals itself as e=arcsin(cTA-l), where T is the relative time

shift. Axially shifted aperture weighting functions may be realized

quite simply, for example, by splitting a transducer array at the center
or by placing two arrays end to end. Procedures for estimating the
relative delay between two signals, even in the presence of noise, have

been thoroughly treated in the literature (a special issue of the IEEE

Transactions on Acoustics, Speech, and Signal Processing was devoted to

that subject). 7 A statistical crosscorrelation of the two beamformer

outputs may be all that is needed, at least in theory. The problem is
not an easy one, however, particularly if the incident wave angle e
varies so rapidly that the analysis must be confined to a brief sample

of output data. Although the relationship between the beamformer out-

puts is linear, it is not memoryless. Moreover, if the incident wave is
periodic with period To, then T can be determined only to within an

unknown integer multiple of T0 , resulting in ambiguous solutions for e,

unless A<T0c.

Since this ground has been explored extensively by many investigators,

we shall confine our attention to pairs of beamformers that exhibit a

linear, memoryless relationship between their outputs.

21



VII. DIRECTION FINDING BY SCALE COMPARISON

Consider an odd-even pair of beamformers whose aperture shading

functions satisfy the Kerr-Murdock conditions, where wl(x) is the odd-

symmetric aperture shading function and

xWKM(X) -"f/wI(x) dx .(27)

As previously shown, the temporally integrated output of the odd beam-

f ormer,

t

ý.(t _ u(t) * ql(t) f ql(t) dt (28)

is related to the unintegrated output of the even (K-M companion) beam-

former by

=1(t) kqKM(t) = c 1 sine qKM(t) (29)

Thus, the incident wave angle e can be determined unambiguously over the

range -n/2 to +ff12 by finding the factor k that relates the beamformer
outputs and then setting e=arcsin(kc). Interestingly, if the wave is
presumed to have come from some remote point at range d, then the dis-I" placement of that point from the broadside plane (i.e., the crossrange)
is just kcd, as follows from elementary trigonometry. Determining the

value of k can be as simple as dividing ql(t) by qKM(t), provided that:
(1) the signal-to-noise ratio (S/N) is very large,

23



(2) the incident wave is truly planar, and

(3) the beamformers have been implemented with no compromises in

aperture shading.

The use of an X-Y oscilloscope display is particularly appropriate for

determining the scaling factor that links the two signals.

Figure 3 gives several possible pairs of aperture shading functions

that satisfy the Kerr-Murdock conditions, but in practice they may be
difficult to realize precisely. The easiest way to create an odd-even

beamformer pair with outputs ql(t) and q2 (t) is to choose an even aper-

ture shading function, split the aperture at the center to form separate

left and right outputs, and then take ql(t) as the difference of those

outputs and q2 (t) as the sum. In that case, w2 (x)=±sgn(x)wl(x). Indeed,

any pair of beamformers designed for the time comparison technique dis-

cussed previously can be converted to such an odd-even pair by this sum-

and-difference method. Unfortunately the only odd-even pair of shading

functions that satisfies both the Kerr-Murdock condition and the split
aperture condition, i.e., for which w,(x)=±sgn(x)wKM,(x), is the exponen-

tial pair given in Fig. 3, which requires a line array of infinite length

(admittedly, the exponential aperture might be approximated by one of

finite length). Even if one is willing to forego the simplicity of a
split aperture beamformer, it must be appreciated that the Kerr-Murdock

conditions can never be satisfied exactly with a finite line array of

discrete transducers.

Fortunately, in most applications it is not essential that the

Kerr-Murdock conditions be satisfied perfectly, as will be demonstrated

in the next section. Before proceeding we observe that, due to the
integral relationship between w,(x) and wKM(x), their Fourier transforms

are related by

W1(f) = j27fW (f) , (30)

and their moment integrals M and M obey
24Mn



w1(x) WKM(x) - w,(x) dx

(a)

(PARABOLA)
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FIGURE 3
APERTURE SHADING FOR KERR-MURDOCK
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1 -(n+l) ,n .(31)

The latter result follows easily from integration by parts.

2



* I.VIII. USING A GENERAL ODD-EVEN BEAM'FORI4ER PAIR

We wil'l consider if it is possible to find an even beainformer other
than the K-M companion beamformer whose output is proportional to the
temporally integrated output of a given odd beamformer through swne
angle dependent, real valued, scalar factor R. This proposition can be
put into equation form, ý,(t)=Rq2(t), where the subscripts 1 and 2 denote
the odd and even beamformers, respectively, and can also be expressed in
terms of Fourier tr'ansforms as

(j2lTf) 1- Ql(f) =RQ 2(f) .(32)

With the aid of Eq. (26), this equation may be solved for R,

141(f sine)
R=jfW (33)

N The use of Eq. (30) gives the equivalent forni

R-sine W KM(f') (4

where f'g(f/c)sino. Clearly the only way that R can depend upon the
wave's angle but not its frequency is for the function W 2(f) to be iden-

tical to W KM(f) or a scalar multiple of it. Since equality nf the Fourier
transforms implies equality of w2(x) and wKM(x), our question is answered
in the negative, at least for an incident wave of unknown, unrestricted

27



form. No beamformer, nontrivially distinct from the K-M companion

beamformer, achieves the desired result for all incident waves.

But if the frequency spectrum of the incident wave is restricted,

then Eq. (34) need not be satisfied at all values of f and 0. In the
important special case where the incident wave is a sinusoid of frequency

f the equality is satisfied automatically, since from Eqs. (33) and

(34)

R(e) sine WKM(f') K (ef )

c W-- f, .2fK2(e,f. 0)

using the directivity function notation defined earlier. The scalar

factor R(e) is clearly an odd-symmetric, real valued function, as can be

seen by examining each of the functions in Eq. (35).

In fact, the beamformer outputs will be related by a scalar factor

even in the nonsinusoidal case, provided the wave is incident at near-

broadside angle. This reasoning follows from the derivative series

representations of ql(t) and q2(t),

ql(t/ = -sine p j1(t) + ... (36)

q2 (t) = M2,0 p(t) + ... , (37)

which, after integrating the first, combine to give the following pro-
portionality law that is valid for small e,

IM-sine 1l"lq(t) 1(38)

The angular range over which this simple proportionality applies can be
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determined from the frequency domain requirement of Eq. (34). Let A

denote the maximum argument, for which WKM(f)/W 2 (f) is approximately

constant, i.e., if tfl<A, then WM(f)/W2 (f) WK(O)/W2 (O) =

-MI,/M 2 0 by Eq. (31). Notice that the size of A depends upon how

closely the even beamformer approximates the K-M companion beamfonner,

being quite large if the approximation is good. Now, let fmax denote

the largest frequency for which the incident wave has significant spec-

tral energy. Then Eq. (34) admits the approximation

z sine/-Ml.l
R sine (39)

7\M2 , /

over the angular range Isinel<cA/fmax. Thus, R is shown to be angle

dependent but frequency independent within the limits of this approxima-

tion.

These results can be summarized briefly. A proportionality rule,

=q(t) R(o) q2 (t) , (40)

holds between the temporally integrated output of an odd beamformer and

the output of an even beamformer, subject to following restrictions:

Case 1: If the even beamformer is the K-M companion to the odd

beamformer, then the rule holds for any incident wave and for all e, with

R(6)=k=c' sine.

Case 2: If the incident wave is sinusoidal with frequency fo, the rule

holds for all angles, for any odd-even pair of beamformers, with R(O)

given by Eq. (35).

Case 3: If the incident wave is nonsinusoidal, the rule still holds for

any odd-even beamformer pair, but only for angles near broadside,
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tej<arcsin(cA/fmax), where the parameters A and fmax are defined just
prior to Eq. (39).

Once R is determined, the wave angle -w/2<e+w/2 can be

unambiguously determined in Case 1, since sine is monotonic over that
range. The same principle applies to Case 3 over a restricted angular

range as specified. But in Case 2 the dependency of R upon e is com-

plicated by the nonconstant ratio term, and R(e) will probably not be
monotonic over the entire range -w/2 <e<+v/2. Thus the unambiguous

direction-finding capability will be limited to the angular range over
which R(e) is monotonic. However, for all of the cases listed above, it

will be impossible to determine the proportionality factor R whenever
the wave is incident at such an angle that the even beamformer output q2 (t)

is too weak to be measured accurately. Hence the angular range will be

constrained, for practical purposes, by the beam pattern of the even

beamformer.

Integrating the odd beamformer output to make it proportional to

the even beamformer output offers a possible benefit even when the trans-

form method is used. The transforms Ql(f) and Q2 (f) in Eq. (26) will be

distorted by the inevitable windowing effects of a computational Fourier

transform, and an imbalance may thus result due to the dissimilarity of

ql(t) and q2 (t). If ql(t) is integrated before digital sampling, how-

ever, the windowing effects will be balanced. Thus Ql(f) in Eq. (26)

may be replaced by (J2wf)'lql(f), where i1 (f) denotes the computed

Fourier transform of ql(t).
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IX. RELATED PROCESSING TECHNIQUES

Those familiar with radar systems will have noticed that, when

restricted to sinusoidal waves, much of what has been presented here

strongly resembles the type of signal processing performed by a monopulse
radar. The same processing method was used successfully in the bearing
deviation indicator (BDI) that was developed at Harvard Underwater Sound

Laboratory during World War II.8 This instrument, which sensed the

bearing angle of sonar echoes from a hostile submarine, was perfected

prior to the development of monopulse radar. Although long since
declassified, the BDI project received little attention in the open

literature. In sharp contrast, monopulse radar has been elaborated and

extended by numerous papers and at least one book.6

Among other things, our treatment extends to general, nonsinusoidal

waves. This may not seem pertinent to many applications, for example to

active sonar systems that employ sinusoidal "pings," however, it is

actually important in even that case when one must ponder the effects

upon bandwidth of using short pulse durations and tuned filters. It is
significant that an integrator, as we have shown, provides the proper

mechanism to extend the traditional 90' phase shift operation to broadband

signals (rather than a Hilbert transform, for example), when coupled with

the use of odd-even shading functions that satisfy the Kerr-Murdock

conditions. To the author's knowledge, the radar literature contains no
references to the use of the Kerr-Murdock conditions for anything other

than providing a "linear" (with respect to sine) sensed angle output, for

waves of a single frequency.

Although restricted to sinusoidal waves, the monopulse literature
suis 10  anayse, 1

includes error effect studies, statistical analyses, performance data, 12
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and design criteria that may be of considerable value in predicting the

performance of paired beamformers used in direction finding. To acquaint

the reader with monopulse techniques and terminology, and to make the

monopulse literature more accessible, the following detailed summary is
provided. The reader is hereby cautioned that transitions between the
sonar and radar environments will be made without comment.

The term monopulse 6 is used to describe radar and radio tracking

systems that measure a target's azimuth and/or elevation angle after
receiving just one pulse of radio frequency (RF) energy, in contrast to

systems that scan the target by slowly rotating the antenna, by wobbling

some component of the antenna, or by sequentially switching between
elements of a compound antenna. In the monopulse method separate beams

are used. They are either pointed in the same direction with displaced
phase centers ("phase comparison" or "interferometric"), or aimed in

slightly different directions separated by a squint angle ("amplitude

comparison"). The dual beams may be obtained from paired antennas, or

by merely employing two RF feedpoints.

Monopulse radar was developed primarily to circumvent a fault of

scanners, namely that modulations produced by scanning are similar to the

modulations produced by target fluctuations, resulting in possible
confusion or interference. But the monopulse method quickly gained a

reputation for remarkably precise measurements of target direction under

good signal-to-noise ratio (S/N) conditions. The technique has given
single target tracking performance with angular precision that bettered

the Rayleigh resolution criterion by 2000 to 1 (only 200 to 1 if all

system errors and biases were included.) 1 2  As a device for precision

direction-finding, the monopulse radar is the most primitive member of

a family of advanced nonlinear processing methods that includes super-
resolution techniques, product arrays, maximum likelihood and maximum

entropy processing, adaptive null steering, and autoregressive or
Prony-type analysis of angular spectra. Yet it is the only method that
has found such widespread use in operational radar systems as a means of
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extending angular precision beyond the classical limits of linear array

processing.

Since digital computers were not yet available when 'the monopulse

method was developed, estimates of target angle had to be computed with

simple electronic circuitry, and that fact largely determined which

statistic would be computed. Most monopulse systems were designed to

compute the real part of the ratio of the complex envelopes of the

difference and sum of the outputs of a pair of slightly displaced beams

(the difference signal having been delayed by 900 in the case of phase

comparison monopulse). This quantity is proportional to the target angle

over a limited range.

Although monopulse radars typically measure both azimuth and

elevation angles, for simplicity let us consider only the measurement of

a single target angle e, aid assume that the target is confined to the

same plane that contains a pair of identical line arrays used to observe

it. For phase comparison monopulse, these receiving subarrays are

collinear but their centers are displaced by a small distance 2h. For

amplitude comparison monopulse, they have a common center but their axes

are separated by a small angle 2es, where es is called the squint semiangle

(i.e., half the squint angle that separates the beams). The left and

right outputs qL(t) and qR(t) are formed by identical, real-symmetric

shading functions. The polar coordinate axis for measuring target

angle e is oriented as shown in Fig. 1. As a consequence of this orienta-
tion, qL(t)=qR(t) whenever the target is located at e=O.

4 Recall from Eq. (16) that the directivity function of a line array

beamformer, K(e,fo), expresses the amplitude and phase relationship between

the sinusoidal field at the center of an array p(t) and its output q(t),

Q=K(e,fo)P , (41)

3
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in which P and Q are the phasors associated with p(t) and q(t), and e
is the target angle with respect to the array's broadside aspect. If

this equation were applied without modification to both component
subarrays of a monopulse system, an incompatibility in the coordinate
reference would result. In phase comparison monopulse, the subarray

centers are not coincident, and therefore the P's would be different. In
amplitude comparison monopulse, the centers are coincident, but the
coordinate axes for e would disagree due to the angular separation. The
necessary mudification is simple. Let K(e) denote the directivity
function that both subarrays would have if they were hypothetically
coincident (i.e., if h=O or eh=0 ). We have suppressed the notational
dependence of K upon fo for convenience. Recall from Eq. (12) that

K(e)=W[(fo/c)sine], where W(f) is the real, even-symmetric Fourier trans-
form of w(x), the aperture shading function common to the hypothetically

coincident subarrays. But suppose we continue to let P represent the
phasor associated with the field p(t) at the coordinate origin, even

after the subarrays are separated or squinted. Then if QL and QR are
the phasors associated with the subarray outputs qL(t) and qR(t), we have

for amplitude comparison monopulse

= K(e-eh)P = K(eh'e)P , (42)

QR= K(eh+e)P (43)

while for phase comparison monopulse,

QL = ejB K(e)P (44)

QR - e'JB K(e)P (45)

where B 2wfoc-1 h sine, which ib the phase shift due to displacement of

the subarray center by distance h.

The transformation to the sum-and-difference outputs

ql(t)=qL(t)-qR(t) and q2(t)=qL(t)+qR(t) is obviously invertible, so these
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outputs can be used for all subsequent signal processing with no loss

of Information. If Q, and Q2 denote their phasors, then QI-KI(e)P and

Q2-= 2 (e)P, where

KI(e) = KL(B) - KR(e) , (46)

K2 (e) = KLje) + KR(e) (47)

For phase comparison monopulse,

KI(e) = K(e) ejB - K(e) eijB = 2JK(e) sinB , (48)

K2(o) = K(e) eJB + K(e) e-jB = 2K(e) cosB , (49)

which are real-even and imaginary-odd, respectively. These results are

unsurprising since the displaced subarrays are still collinear, so the

system may be regarded as a single line array with a pair of beamformers

that have aperture shading functions

w (x) - w(x+h) - w(x-h) , (50)

w2 (x) = w(x+h) + w(x-h) (51)

Since w(x) is even, w1 (X) and w2 (x) are odd and even, respectively. One

of the outputs ql(t) or q2 (t) must be subjected to a 900 phase shift to

bring them into phase agreement. If we use the symbol J to represent

the 900 phase shift operator, which may be implemented in a variety of

ways for sinusoidal signals, then from Eqs. (48) and (49) q,(t)=JtanBq 2 (t).

Since J2r•fo 1 (t)=qi(t) for a sinusoid, recalling that 4l denotes the

integral of q,, it follows that a phase comparison monopulse system with

sum-and-difference processing constitutes our Case 2 odd-even beamformer

pair, for which 4l(t)=R(e)q 2 (t)" Clearly,
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R(e) * (2nf o)1 tanB - (2ff f)I tan(2rfoh#Chsln0) i(2)

For this case, the angle can always be determined unambiguously from R(e)

over the range Isinel<c/4foh.

On the other hand, for amplitude comparison monopulse

K1(e) = K(es-e) - K(es+e) , (53)

K2 (e) = K(e s-e) + K(e s+e) (54)

These directivity functions are real-even and real-odd, so instead of

being 900 out of phase, the outputs are exactly in phase. This departure

from the behavior of odd-even beamformers should have been expected, since

the component subarrays are not collinear. However, it is true that

ql(t) q LRT- 2(t) (55)

where the quantity in brackets, being a ratio of odd and even real functions,
is itself an odd function, monotonic over some angular range, and linear
for small e. Thus 6 can be determined from the scalar factor that relates

ql and q2 ' without the need for integrating.

For a single incident wave, the ratio Q1/Q2 (or Ql/jQ2 in the case of

phase comparison radar) ought to be real. However, due to a variety of

corruptive effects, it may possess an imaginary part. It is customary to

use the real part of the ratio for angle detection, i.e., to use

r l Re or Re (56)

The implications of this custom will be discussed in a later section of

this report.
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Before concluding this summary of monopulse radar, we should alert

the reader to the fact that some phase comparison systems compare the

phases of ql(t) and q2 (t) directly without ever forming the sum-and-

difference signals, and primitive amplitude comparison systems sometimes

detect the amplitudes separately before comparison. Note that this latter
method is not strictly equivalent to sum-and-difference processing. More-

over, the literature gives considerable attention to various ways of
transforming the signals prior to detection, mostly based on the following
two simple properties of complex variables: If Z and Z2 are complex

phasors which have equal amplitude but which differ in phase by an angle 9,

then J(Zl+Z2 ) and Zl-Z2 have like phase but differ in amplitude and have

the ratio tan(e/2). On the other hand, if Z and Z have like phase but
possess an amplitude ratio r, then ZI+jZ2 1and Zl-jZ2 have like amplitude

but differ in phase by 2arctan(r).

I(

~~z.
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X. PHASE SHIFT SQUINTED, AMPLITUDE COMPARISON MONOPULSE
VERSUS ODD-EVEN BEAMFORMING

In a sonar Implementation of an amplitude comparison monopulse

system, it is likely that the beam squinting would be implemented by
electronic phase shift steering of a single line array rather than by

using two physically distinct arrays. For this case, and with the proper

interpretation, there is an eruivalence to the use of an odd-even beam-

former pair.

The output q(t) of a simple array with an even-symmetric aperture

shading function w(x) is, from Eq. (1),

q(t) =f w(x) p sin dx

If the complex function P(x) expresses the amplitude/phase of the inci-

dent sinusoidal field at point x, and Q is the output phasor, then

Q = Jw(x) P(x) dx (57)

The array can be steered to any angle es by applying a progressive

phase shift along the array sensor axis:

Q aSw(x) eijSx P(x) dx

=Jw(x) cos(Sx) P(x) dx - fJw(x) sin(Sx) P(x) dx (58)
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where S-(fo/c)sines. If an amplitude comparison monopulse system is then

formed by taking sum-and-difference outputs Q, and Q2 after phase shift
steering to the two squinting angles es=+eh, the result is

Q -Jf Wl(x) P(x) dx (59)

Q2  f w2 (x) P(x) dx (60)

where the odd-even shading functions wI and w2 are

wl(x) 2w(x) sin(x fo sineh) (61)

w2 (x) = 2w(x) coS(cx fo sin0h) (62)

From Eq. (60) we see that

q2(t) =Jfw2(x) p(t stne) dx (63)

A similar result holds for Eq. (59) except that we must insert the pre-

viously defined symbol J to account for the 900 phase shift that is

implied by the j factor:

Jq1(t) fw1 (x) p(t sine) dx (64)

Examination of Eqs. (63) and (64) reveals the phase shift squinted,

amplitude comparison monopulse system to be equivalent to an odd-even pair

of beanformers, except that it already has a 900 phase shift in its ql(t)

output. But that phase shift was effected artificially as part of the
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phase shift steering process, and could just as well have been postponed

until needed to bring the sum-and-difference outputs into phase agree-

ment. Thus the difference between these two methods is one of inter-

pretation. The situation is quite different with a true amplitude

comparison system, which performs its 900 phase shift by spatial pro-

cessing rather than electronic or computational processing.
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XI. THE PARTICLE MOTION EQUIVALENCE PRINCIPLE

The output q2 (t) of an even beamformer is related to the incident

wave by Eq. (4), q2 (t)=w2 ,,(t)*p(t), where w2 ,,(t)= l w2(t/k), with
k=sine/c. Suppose the even-symmetric shading fuction w2 (x) has been

selected to yield a highly directive broadside beam. Then W2 (f) must

mimic the frequency response of a low pass filter if the directivity

function K2 (e,f)=W2[(f/c)sine] is to pass only those waves having small

e. Equation (6) gives the frequency domain behavior,

Q2 (f)=W2 [(f/c)sine]P(f), by which the beamformer may be characterized as

an angle dependent low pass filter whose cutoff frequency is inversely

proportional to sine, or as an angular filter whose small angle cutoff,

i.e., beamwidth, is inversely proportional to frequency. This spatial

filter is remarkable in being devoid of phase shift at all frequencies,

since W(f) takes only real values. Let f denote the low pass cutoff

frequency, so that IW(f)-W(O)1<6 for Ifl<fLb where the tolerance parameter

6 may be chosen to fit the 3 dB point, for example. We define broadside

window as the set of frequency and angle combinations for which

I sine <L " (66)

Thus, if an incident wave "passes through" this window, i.e., if all of

its spectral energy is at frequencies that satisfy Eq. (66), then

Q2 (f) • W2 [(f/c)sino]P(f) W2(O) P(f) and it follows that

q2 (t) W2 (O) p(t) . (67)

(For simplicity we shall drop the approximation symbol.) Figure 4

illustrates the windowing effect of the even beamformer's directivity
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function upon waves coming from sources at various angles. The effect

may be regarded as a shielding action. This figure must be interpret•d

with caution since the opacities of the directional response are

represented only figuratively, with no frequency dependence shown.

Now suppose this even beamformer is combined with its K-M companion

beamformer to form an odd-even pair. Also, for the moment, let us

restrict our discussion to "plane" waves emanating from very distant

wave centers that lie in a single X-Y plane that contains the receiving

aperture. If a(t) denotes the acoustic particle displacement along the

ray path of a solitary incident plane wave, then p(t)=-(B/c)i(t), where

B denotes the bulk modulus. The scaling of the aperture shading function

w2 (x) is arbitrary, so assume for mathematical convenience that it is

scaled to make W2 (O)=-(c/B). With this calibration adjustment the beam-

former output for a solitary plane wave incident at angle e is given by

q2 (t)='(t), provided the wave passes through the broadside window

unscathed. (Note that we are assuming a line array of acoustic pressure

sensors that accurately measure the instantaneous pressure of any plane

wave arriving within its broadside window.) It follows that the particle

displacement could be determined merely by integrating q2 (t), i.e.,

a(t) = 4 2 (t) . (68)

To represent the acoustic particle motion on an X-Y display device

such as an oscilloscope, it would be necessary to set Y=a(t)cose and

Xm-a(t)sine. Recall that

S~~~q-,t sn_• q (t)

so we may simply set

X = -c4 1 (t) , (69)

45

S.... ;~t*.¶' •-Y - -¥ ________________........ __. ___. __ "''_"__ .,_ ......



where the double bar denotes two temporal integrations. Unfortunately,

there is no linear way to form Y=a(t)ccse without prior knowledge of e,

but if the broadside window admits only waves whose angles are small

enough that cose is approximately one, then we can set

Y = 2(t) . (70)

Notice that the error in setting cose=l is at most 10% for angles less

than 250, or 1% for angles less than 80, so the distortions in the dis-
play will be quite small in most cases of interest.

For a solitary incident wave, the particle motion (actual or

simulated) occurs along a straight line that points toward the wave cen-

ter, presumed to be an infinite distance away. But this display con-

tinues to accurately represent the particle motion at the point of

measurement even when several distinct waves with arbitrary spectra

arrive from a variety of angles near broadside. This is true because

the process of beamforming, scaling, and integration is just as subject

to linear superposition as is the acoustic medium itself. Note also

that the integrations are reversible, so the display preserves all of

the information contained in the beamformer outputs. The eye will likely

not be able to interpret that information as well as an electronic angle

detector of good design. The subject of angle or slope detection will

be covered later. For the moment we simply note that, loosely speaking,

the angle of a dominant wave in a background of weaker waves is revealed

by the predominant direction of particle motion.

Any odd-even beamformer pair may also be used to generate the

display, provided the incident waves have acceptable frequency spectra

and angles sufficiently near broadside so that ql(t)=R(e)q2 (t), and so

that R(e) accurately approximates (sine)/c to within a multiplicative

factor. The X variable must be properly scaled to compensate for Lhat

factor, of course. Moreover, it may be possible to design a substitute

beamformer whose output is related to that of the original even
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beamformer by the factor cose over a limited frequency range. This would

reduce the distortion that results from using q2 (t) to drive the Y

variable.

The significance of the argument just presented goes beyond the

mere generation of an interesting display. It demonstrates that the

beamformer outputs contain no more and no less information than is

required to describe the acoustic particle motion at a hypothetical

measure•nent point that is shielded by the directivity function associated

with the even beamformer. Nothing can be determined about the individual

waves, or about the locations of their wave centers, that does not reveal

itself in the acoustic motion of this single particle. The problem of

properly interpreting the beamformer outputs can be approached purely

from the standpoint of basic physics and signal geometry, with little

regard to the parameters of the line array that might be used to obtain

them.

The particle motion equivalence principle just stated clarifies the

role of directivity in identifying the geometrical configuration of a

distant cluster of wave centers. The direction of a solitary wave cen-

ter can always be determined with infinite precision in the absence of

measurement noise. But if waves with similar frequency spectra arrive

from a cluster of wave centers whose angular extent falls well within the

broadside window, then it may not be possible to separate their effects
upon particle motion. Nevertheless, analysis of its motion may provide

some information about the cluster, and it would seem that such knowledge

could only be enhanced by sharpening the directivity function. But

unless the directivity can be improved to such a degree that the broad-

side window masks some of the elements of the cluster, there will be no

effect on the particle motion, and hence no effect on the information

content of the beamformer outputs. This seems to suggest that a modest

enlargement of the receiving aperture, although it would certainly

improve the directivity, might be of no aid in identifying the cluster

structure. Yet, under some circumstances, that is definitely not true.

•' 4 If the beamformer outputs are seriously corrupted by measurement noise
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of a sort that does not grow with the size of the receiving aperture,

such as electrical noise, then its enlargement should increase the

received signal energy, thereby improving S/N even though the enlarge-

ment has no effect on the particle motion. This improvement would cer-

tainly be beneficial for determining the direction of a solitary wave

center, since in that instance the precision is limited only by measure-
ment noise. But in the case of waves from a cluster, the analysis of

particle motion might be limited more by its sheer complexity than by

measurement noise, and a modest aperture enlargement would then be of no

benefit.

It should be acknowledged that this presentation has ignored some

acoustical details. We have assumed perfect transduction, and the dis-

tortion of particle motion caused by the physical presence of the array

has not been considered. The particle motion discussed here is predicated

upon hypothetical free field conditions, i.e., it is the motion at the

measurement point in the absence of the array, but shielded by the even

beamformer's directivity function. We have also used the terms plane

wave and wave center despite their contradictory nature. This practice

will be continued, under the assumption that the wave centers are so dis-

tant that the incident waves are effectively planar. Notice that setting

X = -c- 1 (t) (71)

and
TJ

Y = q2 (t) (72)

provides a display of particle velocity, which is just as useful for

determining wave direction. For this reason, the beamformer outputs

-ql(t) and q2 (t) may be referred to as the velocity outputs.

The use of an oscilloscope display to reveal wave angle (using sum-

and-difference beamformers) has been known since the 1940's, 8 and has been
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discussed in at least one textbook. 13 But in its traditional form the
display has a frequency dependent angular scale, and the connection
between the display and acoustic particle motion has been ignored.

.I
I.
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XII. ANALYSIS OF X-Y DISPLAY MOTION
FOR MULTIPLE WAVES

Regardless of whether one constructs a particle displacement display

or a particle velocity display, or merely connects the "1 (t) and q2 (t)

outputs of any odd-even beamformer pair to an X-Y display device with

arbitrary scaling, a solitary incident wave will manifest itself as a

straight line through the origin. If the display point (X,Y) is (ql,q2),

then ýl(t)=R(e)q 2(t), with R(e) given by Eq. (35), and the point lies on

the line X-RY=O at all times. The displayed point will trace out that

line repeatedly with each oscillation of the incident wave. The line

will tilt tothe right or left of vertical in accordance with the mapping

of incidence angle to display angle that is induced by the function R(e)

(see Fig. 5). The length of the line as projected onto the Y-axis

represents the peak-to-peak amplitude of the output of the even beam-
former, so it will be relatively independent of the angle of incidence

so long as the ray path remains within the broadside window.

If two waves arrive at different times and different angles, then
two lines will be traced in succession (see Fig. 6(a)). If (XI,Yl)

denotes the coordinates of the displayed point during the arrival of the

first wave and (X2 ,Y2 ) denotes those during the second, then X1-R Y1=O

and IX2-R Y =0 where R, and R2 denote R(6,) and R(82). But if the waves

arrive simultaneously, yielding the superposition of coordinates

(Xs,Ys)=(XI+X 2,YI+Y 2 ), then the display point will not be confined to

a line. Its coordinates (Xs,Ys) will obey

-RYS (l-R1R 1 x (73)

and
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XS R2 Ys u (l.R 2R1I)X1  (74)

and if we assume the subscripts have been chosen so that R2>Rl, then

(l-RIR 1 )min{X2 Xs - R1Ys S (l-RIR2 1)max{X 2 } (75)

and

(R2 R Il-)min{-Xl ý X - R2 YX (R2 RII-l)max{-Xl . (76)

These limits constrain the display point (Xs,Ys) to the interior of a

parallelogram. Two of its sides are parallel to the line X-R1Y=O with
Y intercepts Y.(l-RiR 1)minX 2 } and Y+=(l-R R21)max{X 2 , and the other two

sides are parallel to the line X-R2 Y=O with Y intercepts

Y.(R 2 Rl-l)min(-Xl} and Y+=(R 2 Rll-)max{-Xl}. If wave I were extinguished

then both bounds of Eq. (76) would become equal, and the display would

collapse to a single line segment through the origin with slope R2 , its

cnds touching the parallogram boundaries. Similarly, if wave 2 were

extinguished, the result would be a line with slope R1, also touching

the parallelogram boundaries (see Fig. 6(b)). These line segments bisect

the sides of the parallelogram, and may be regarded as non-orthogonal but

additive components of the display motion (see Fig. 6(c)).

If wave 2 is periodic with period T2 , then X attains its maximum

and minimum values at least once during each period, i.e., the display

point touches both sides of the parallelogram defined by Eq. (75) during

every time interval of duration T2 . Similarly, if wave I has period T1,

then the remaining two sides are touched at least once during that

period. If both waves are periodic, then unless there is some coherence

between the two waves, it is likely that enough different points of the

bounding parallelogram will be touched to define it unambiguously after

a brief interval of observation. Then R and R can be determined from

the slopes of its sides, and if the angles of incidence lie within the

range where R(e) is monotonic, then el and 02 can be determined from R,
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and R2 (see Fig. 7). It is thus possible to resolve both angles of

incidence when the incident waves are periodic but not coherent, even

when they arrive simultaneously. But it might be preferable just to

sep; rate them by using tuned filters.

More important is the case in which the two waves are coherent,

being sinusoids of the same frequency. In this case, tuned filters

would be of no use in separating the components. Both coordinates Xs(t)

and Ys(t) are sums of sinusoids of the same frequency; hence both reduce

to single sinusoids, not necessarily of the same phase or amplitude.

Anyone familiar with Lissajous patterns knows that the resulting display

will be an ellipse. As a result of the properties discussed in the pre-

ceding paragraph, the ellipse must touch all four of the parallelogram's

sides, i.e., it is inscribed in the parallelogram (see Fig. 8(a)). In

the special case where the waves arrive in phase the ellipse degenerates

to a straight line, which must be one of the diagonals of the parallelo-

gram (in order to touch all four sides). The long and short diagonals

thus represent constructive and destructive interference of the waves.

Unfortunately, if the phase relationship of the incident waves remains

steady, the ellipse will remain steaJy as well. A single inscribed

ellipse is not sufficient to define the parallelogram. But if the rela-

tive phase between the wave components drifts while their amplitudes
"A remain constant, then two or more inscribed ellipses will be seen and the

boundary parallelogram will be revealed, i.e., the two wave angles will

be resolved (see Fig. 8(b), (c), (d)). If, as in active sonar, the two

waves are actually echoes from objects that are physically separate,

then their relative phase may be altered by physical motion of the trans-

mitter, the receiver, or the objects themselves, or by varying the

operating frequency.

The inscribed ellipse interpretation has important implications for

detecting the angle of a supposedly solitary wave that has been cor-

rupted in some way. Suppose that, due to multipath (refractive or

reflective) effects, what started out as a single wave arrives as two

waves, at slightly different angles. Or, suppose that a weaker wave of
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the same frequency arrives from a different wave center, perhaps due to

reflection of a transmitted wave from a boundary. Given that the

stronger wave produces a longer line segment component of the display

than the weaker wave, it is clear (see Fig. 9) that the apparent direc-

tion of the wave, as interpreted by any reasonable characterization of

the ellipse's angle of tilt, always lies within the longer wedge formed

by the parallelogram diagonals. Thus the effect of the weaker wave is

either to attract the apparent direction towards itself if the inter-

ference is constructive, or to repel it if the interference is destruc-

tive. In the latter case, the apparent direction does not lie between

the actual wave centers. This phenomenon, whereby two wave centers con-

spire to appear elsewhere, is known as "glint" in the radar monopulse

literature. Nevertheless, if the offending wave is significantly weaker,

for example, if its contributed line segment component of the display
is less than one third the length of that of the main wave, then the

angular extent of the "wedge of uncertainty" is relatively small. In

any case, parallelogram sketches are useful tools for predicting such

effects. An even clearer picture of performance can be obtained from an

X-Y oscilloscope with two oscillators set at slightly differing fre-

quencies to simulate waves having a slowly varying phase difference. A

means must be provided to additively mix the two signals into both chan-

"1• nels of the oscilloscope.

If more than two waves arrive at the same time, the situation becomes

rather more complicated. It is straightforward to show that the gen-

eralization of Eqs. (75) and (76) to N waves is

An Xs - RnYS ' Bn for n=l,2,...,N (77)

where An and Bn are the minimum and maximum values of

, N

"mOn nm
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These inequalities confine the display point to the interior of a polygon

having 2N sides, grouped as N pairs of parallel sides. Unfortunately

for N>2, the quantities An and Bn depend upon more than one wave, and

even if each wave is periodic there is no guarantee that the display

point will touch the corresponding sides during every period. But for

every pair of sides of the boundary polygon that can be discerned, the

corresponding slope Rn can be determined and the direction of that wave

component resolved. The feasibility of such an approach for a given set

of multiple waves is best explored via the oscilloscope method, or by a

computer simulation.

A related method for resolving two monopulse radar targets has been

developed by Sherman, 1 4 but that method is purely algebraic, and lacks

the benefits of a geometrical interpretation.

Several investigators have analyzed monopulse radar behavior in the

presence of multiple targets, employing statistical methods in most

cases. Recall from Eq. (56) that a monopulse radar computes

r [ReI or Re

If the output phasors Q, and Q2 represent the combined radar returns from

many point scatterers, regarded as ideal point targets,

then

SiQ2,ui

r ReliQi , (79)SLi Q2,i
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where

Ri=• or Ri o

Note that each point target component would produce a real-valued ratio
that accurately indicates its angle relative to broadside, i.e.,
Rt-R(ei). So,

SR(Oi)Q2,i

r i(80)SQ2,1

Equation (80) may be used as the starting point for investigating the
behavior of monopulse-type receivers for multiple targets, either via

statistical methods or simulation.10
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XIII. SLOPE DETECTION

Regardless of whether one really wishes to generate it, the concept

of the X-Y display suggests good ways to extract wave angle from the odd-

even beamformer outputs. As shown in the previous sections of this
report, the beamformer outputs can be used to generate signals X(t) and

Y(t) that, for a solitary incident wave in a perfect, noise-free environ-

ment, obey the straight line relationship X(t)=R(O)Y(t) at all times, and

e can be determined from R within some monotonic range. We may even
regard the observed factor R, the slope of the displayed line, to be a

direct measure of wave angle in nonlinear "R units". (Although R will

be referred to as the "slope", note that it is the slope of X versus Y
rather than the more familiar Y versus X.) Noise, multipath, and

extraneous wave sources may distort the line into something much more

complex, such as an ellipse or a Brownian motion path. Neverthless, it
is to be expected that the straight line component of the dominant wave

will assert itself as a line of elongation, an axis of symmetry, or some

other attribute that gives the display an identifiable slope. The prob-
lem of slope detection may be posed in a gross way as finding an estimate
A

R, such that

Sii X(t) RY(t) . (81)

If e=O, then under ideal conditions the display must be a vertical line

with R=O. However, in the presence of random disturbances, the display

will distribute itself symmetrically about the vertical axis, at least

in a statistical sense, so that the product X(t)Y(t) averages to zero.
If, on the other hand, the wave angle deviates from the broadside direc-
tion or, equivalently, if the line array is physically rotated, then the

idealized straight line will have a nonzero slope R, i.e., it will rotate

through an angle a, where R=tans. If the wave source is not so simple
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and has an angular extent that produces a more complex display than a

mere line, then the entire display pattern will rotate. There will be

little or no discernible distortion associated with this rotation if the
odd symmetric function R(e), besides being monotonic, is approximately

linear over an angular span that encompasses all of the wave sources

which contribute significantly to the display pattern. Moreover, if
statistically independent, Gaussian background noise corrupts the display

variables X(t) and Y(t), and if these variables have been scaled for

equal noise variance, then the display components contributed by this
noise are statistically invariant with respect to rotation. Thus, under
a broad class of circumstances, we are led to estimate the slope as

R= tans , (82)

where 0 is the clockwise angle through which the display pattern must be

rotated to decorrelate the coordinates of the display locus, i.e., 0 is

the angle required to make

av{x(t)y(t)} = 0 , (83)

where

(t [sino cos$J x (t (84)

The averaging operator denoted by av{.} is quite general. Our subsequent

developments will depend upon only two properties: (1) the averaging

process must be a linear operation, and (2) the average of a nonnegative

quantity must not be negative. Included, for example, is the case of an

"average" formed by a low pass filter.

If the product x(t)y(t) is formed from Eq. (84) and then substituted

into Eq. (83), and the result divided by cos 2 $ and av{Y2 (t)}, the fol-

lowing equation results:
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(l-tan2o)r -(tano)p - 0 ,(85)

where r and p are defined by

av(X(t)Y(t)}

r (86)

2

av{Y (t)) (6

p av{y(t)} - av(X2(t)} (87)
av(y

2 (t) 

(

If R is substituted for tans, then a quadratic equation results:

rR2 + pR - r 0 , (88)

whose roots are

S^ = -P± + 4r2)(9
R1, R2  (89)

where Rl denotes the root with the positively signed radical. Note that

the product of the two roots is -1, i.e., each is the negative reciprocal

of the other. This result should come as no surprise since negatively
reciprocal slopes imply orthogonality, confirming that the rotated dis-

2: play remains just as uncorrelated if it is rotated an additional 900.

Of these two orthogonal choices for the apparent slope of the display,

it is logical to select the one along which the display is most strongly

distributed, and this can be accomplished by picking the root that has

the same sign as av{X(t)Y(t)), i.e., the same sign as r. But the radical

term in Eq. (89) is always larger in magnitude than -p, so the sign of
the numerator is controlled by the sign in front of the radical. Thus

R is the root that always has the same sign as r, so we take
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2r a R) = r (90)

p+ V/Ip2+4r2

The quantity in brackets must lie between 0 and 2, as can be shown by
some mildly tedious algebra that will only be outlined here: (1) the

radical is larger in magnitude than p, so the number in brackets is non-

negative. (2) From the two properties of av{.} given above, it is

easily proven that [av{XY}] never exceeds the product av{X )av{Y }, by
mimicking the standard quadratic discriminant proof from basic statistics,

wherein av{.} denotes expectation. (3) It follows, after some simple

algebra, that the expression under the square root sign, p2 +4r 2 , is•, av~x2+v 2} /a~2}.
bounded by [(av{x )+av(Y ])/av{Y 2 (4) The sum of p and the square
root of this bound is 2, so the quantity in brackets does not exceed 1.

Hence, the estimated slope R agrees in sign with, and equals or
exceeds in magnitude, the coefficient r. Both quantities have a statis-

tical interpretation. If the display comprises a set of points that
would fit a straight line through the origin were it not for the corrup-

tive effects of independent, Gaussian perturbations of zero mean, then r

is the sampled coefficient of regression of X upon Y. If, in addition,

the axes have been scaled for equal noise variance, then R is the maxi-
16mum likelihood estimate of slope.

When the display is dominated by waves (including directional

noises) arriving at angles very near broadside, the X(t) signal will

remain very weak, since it is derived from the output of the beamformer

that has a broadside null. Expressed another way, the display will be

tall and thin. Thus r will be quite small and p will approximate unity,

so that r is an approximate estimate of R,

r R ;R .(91)

If the beamformer outputs are dominated by sinusoidal waves whose spec-

tral energy is concentrated at some frequency fo, as in the case of

active sonar, then X(t) and Y(t) will trace an ellipse, degenerating to
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a straight line for a solitary incident wave having a well defined angle.

If we represent the amplitude and phase of the sinusoids X(t) and Y(t)
by phasors Zx and Zy, then if av{.} represents a long term arithmetic

mean or a short term mean over an integral number of periods, then we
see by analogy with the well known properties of voltage and current

phasors in elementary electrical circuit analysis that

avfX2(t)) = LZX avY 2 (t)} = Y.L• ,. (92)

and

Ref IZY
av{X(t)Y(t)} 2 (93)

It follows that

Re{ZxZYI Z
r =Re (94)Zy

and

p: -IZxi 2/IZy2  (95)

Equation (94) is completely equivalent to Eq. (56), allowing for harmless

scaling; it is used in the monopulse radar literature to define slope

detection for analytical purposes, although it is usually termed "angle
detection" in recognition of the fact that the slope measures the wave's

incidence angle in R units. However, the electronic circuitry used to
6

compute the angle is often more indicative of Eq. (85). Notice that r

t is the slope of a line drawn from the origin to the point of tangency of

a horizontal line that just touches the top of the displayed ellipse

(see Fig. 10). On the other hand, R is the slope of the "axis of

;. I ._ - - - _ ,' .... .. . _ z". . . . 6-
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decorrelation", i.e., it is the slope of the ellipse's major axis. To

the author's knowledge, the only Justification for using Eq. (94) ever
given in the monopulse literaturc is that Zx/ZY o to be real, and

that taking the real part is a reasonable way to force a real valued
result when the sinusoids are not perfectly in phase.

It is evident from Eq. (85) that r is affected by a scaling of the

coordinates X and Y in just the same manner as the slope of a line would
be, i.e., it varies linearly with scaling of X and inversely with scaling

of Y. The conversion of estimated slope to wave incidence angle would

wave angle would be invariant to any such scaling if r were used to

estimate slope. But if R is used to estimate the slope, then the effect

of scaling is somewhat different. If the X coordinates are scaled to a
very small size, then p goes to 1 and R converges to r, and therefore

produces the same detected wave angle. On the other hand, if the X

coordinates are scaled to larger values, the detected angle may be sub-

stantially different, i.e., the detected angle using R is not invariant

with respect to display scaling.
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XIV. SUMMARY

The following concise summary of processing methods is presented

as an aid to applications. The reader is referred to the main text for

details.

Suppose Y(t) is driven by the output of a beamformer having even-

symmetric shading, and X(t) is driven by the temporally integrated output
of a beamformer having odd-symmetric shading. If both beams are formed

from the same line array, then X(t) and Y(t) are related by a constant

multiplicative factor, within certain restrictions. For a solitary

sinusoidal wave incident at angle 0, they are related by

X(t) = R(e) Y(t), (96)

where
Kl(e,fo)

R(O) j2rfoK2 (e,fo)

with K (e,fo) and K2 (o,fo) being the directivity functions of the odd and

even beamformers at frequency f0 "

For a solitary wave of arbitrary spectrum incident at angle e4<l,

i.e., very near broadside, Eq. (96) still holds with

R(e)= - 7M2 ,0 j sine (98)

where M ,I is the first moment of the odd beamformers aperture shading

function and M is the zeroth moment of the even shading function; i.e.,
2,0

it is the broadside sensitivity of the even beamformer.
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If the even beamformer happens to be the Kerr-Murdock companion
to the odd beamformer, then Eq. (96) holds for any incident wave spectrum
and for all angles of incidence, with

R(e) "I sine . (99)

The locus of points [X(t),Y(t)] is a straight line and R is its

(X versus Y) slope, i e., the line makes an angle a with the vertical
axis, where

s = arctanR(e) . (100)

Over the domain for which R(e) is monotonic, the angle of incidence

can be determined from observation of R.

If several waves are incident at angles el,02,..., then the locus is
confined to the interior of a polygon that has two parallel sides for
each of the slopes R(el), R(e2),..., and the angle of a component wave
can be determined (i.e., "resolved") whenever the corresponding polygon
sides are observed. In particular, for two incident periodic waves the
locus will be inscribed in a parallelogram.

The predominant slope of a locus corrupted by noise, multipath, or

other disturbances may be estimated as

-- = 2r (101)
+r/2 + 4r2

where
i AXY

Ar- (102)

A - AXX
- A (103)
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and AMy, AXX, and Ayy are the averaged values of XY, X2, and Y
respectively. The average may be computed by a filter, for example.
The number r is itself an estimate of the slope, and converges to R

if both AXy and AXX are small compared with Ayy.

A computational transform method may also be used to process the
beamformer outputs, as described in the main text of the paper.

.1
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PERTURBATIONS OF APPARENT DIRECTION

DUE TO PHASE FRONT DISTORTION

1

S • •.'• ',, .}. . '• • •I ; • ; _,. ,.:75• •.••-•



Let

RefW r ei2"fotl

w(r,t) -Re W(r)e (A.1)

be the total field at position r due to spherical, sinusoidal waves

emanating from a collection of N targets. If the targets are located at

distances Dl,D 2 ,,,.,DN from the origin, lying in directions represented

by unit vectors ul,)U,...uN, then the position of the ith target is

represented by the vector Diui. Let Wi(r) denote the component of the

complex envelope W(r) due to the ith target. Then it follows from the

spherical nature of each wave tnat

/__Dir__ iDir 2lrf°
Wi(r) Wi(O) . Di) exp c 2 (A.2)

where Dir denotes the distance between the point r and the ith target,

Dir 0 Diui-rI. The field in the vicinity of the origin may be found by

expanding Eq. (A.2) to first order in the differential vector dr,

Widr) -. Wi(O)(l+JKi<ui,dr>) ,(A.3)

where

2•fo

K A _(A.4)S= c Di

and <a,b> denotes the inner product. Notice that Ki quickly converges
I to the real valued wave number constant, 2vfo/c, as the target distance

increases. The total field due to the N targets is

WOO) Wi(dr) :(l+j<G,dr>)14(0) (A.5)

i7
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where

E Wi(O)Kiui
G E Wi(O) (A.6)

i

and we have made use of the fact that W(O)=Wi(O). Contemplation of

Eq. (A.5) leads to the conclusion that Re{G} is the gradient vector of

the phase of the field in the vicinity of the origin, while -IW(O)jImfG}

is the gradient vector of the amplitude.

Let us consider some special cases. Suppose there is just one

target at distance D in direction uI. Then G=Kiui, so the phase

gradient is (2rf /c)ui while the amplitude gradient is IW(O)1Ul/D 1 .
0 1

Both gradient vectors point in the direction of the target, i.e., towards

the source of the single spherical wave. The amplitude gradient is very

weak for a distant target, but the phase gradient remains strong even at

extreme distances.

The outcome is similar if there are N targets lying in the same

direction, ul=u 2 =,...,uN, since G is then a scalar multiple of uI. Both

gradient vectors point in that direction and the magnitude of the phase

gradient vector still approximates the wave number 21rfo/c, provided all

of the targets are rather distant.

Now suppose there are N targets at different directions but with

positions and phase characteristics that connive to make the spherical

waves arrive at the origin in phase. Their shared phase component can

then be canceled in the numerator and denominator of Eq. (A.6). In this

case, the phase gradient is

e 2f 0 • IWi(O)Iui (A.7)Re{G} 1•
c E W 8 (O)l
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This formula is convex with respect to the ui's because the weighting

coefficients are all positive; i.e., the phase gradient lies within a

convex subset bounded by the vectors ui and points to a particular spot

somewhere within the collection of targets, termed the "radar centroid"

in monopulse literature. The amplitude gradient vector has a similar

form:

E jWilui/Di

-IW(O)I Im{G} = IW(O)! i (A.8)

If all the targets are at roughly the same distance D then the ampli-

tude gradient is approximately (c/27rfo)IW(O)IDc times the phase gradient,

so they point in virtually the same direction.

When the spherical waves do not arrive in phase, the outcome is much

more complicated. For active sonar applications, we are most interested

in the case of a fairly distant collection of N targets that are

clustered around an arbitrarily defined geometric center whose distance

and direction from the origin are represented by Dc and the unit vector

uc, respectively. We assume the cluster has a limited downrange extent

in the sense that Di/Dc is extremely close to unity for all i, although

the differences Di-Dk are permitted to be much larger than the acoustic

wavelength. In effect, this means (2nfo/c-j/Dc) can be substituted for

the Ki's in Eq. (A.6), with the result that

G Kc z (Xi+jYi)ui Kc E Ziui (A.9)

to a very close approximation, where

W.(O)
"Xi + JYi (A.1O)
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and

Kc . (A.ll)

Notice that W(O) = E W.(O) so E Xi = 1 and E Yi = 0. If the target

cluster has limitedicrossrangeiextent then the direction vectors ui will
all lie very close to uc, and it follows that Re{U} Xiu = 1, andSI
IMU} ; z YiUc = , i.e., U u . We can investigate the variation of U
from thil approximate value by setting ui=uc+(ui-uc) in Eq. (A.10),

U = uc + U (A.12)

where the complex displacement vector U is defined as

U• z. Zi(ui-uc) (A.13)

Although uc and the ui's are real, and Kc is almost purely real, there
is no simple rule for predicting the phase of the displacement vector
because the complex ratios Zi can have arbitrary phases. Even the
direction of U is uncertain, since it is a linear combination of the
vectors u i-uc, which are likely to point in a variety of directions if
the targets are clustered randomly about the geometric center.

The amplitude gradient vector points in the direction of -Im(G),
which can be expressed using Eqs. (A.10) and (A.12) as

Uc

-Im(G) -Im{KcU} Im{KcU (A.14), D- c
c
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Its direction is unpredictable due to the aforementioned uncertainty in

U, which is likely to be the dominant factor since the term u /Dc is so

small for a distant target. There is little that can be said about the

amplitude gradient in this case, other than that it is likely to be very

weak and may not point in the same direction as the phase gradient.

Fortunately, the amplitude gradient is an unimportant factor here. Based

upon radar experience, any odd-even beamformer pair, any monopulse radar,

or virtually any tracking radar will characteristically perceive the

target cluster to be in the direction of the phase gradient vector.

To get the phase gradient of the acoustic field we must take the

real part of G,

f fIra{u}

Re{G}= Re{KcG} (U c+Re{U}) + •--c (A.15)

The last term can be neglected since the target cluster is distant, so

the phase gradient points in the direction of Re{U}=uc+Re{U}. We may

think of it as pointing toward the apparent center of the target cluster,

also termed the phase center in the radar literature. The apparent cen-

ter is displaced from the geometric center in accordance with Eq. (A.15).

The quantities Zi in the definition of U given by Eq. (A.13) express the

fractional contribution of each target to the total field at the origin

W(O), and can be expected to be of less than unit magnitude under normal

circumstances. Due to the limited crossrange extent of the cluster, the

vectors (ui-uc) are extremely small. Thus the vector U must be of very

small magnitude, and the apparent center is only slightly displaced from

the geometric center. However, if the configuration and orientation of

the cluster are such as to produce destructive interference of the com-

ponent spherical waves at the origin, i.e., -if the origin lies in the

direction of a "null" in the radiation pattern of the cluster, then W(O)

may be small, even zero. Under that circumstance, the fractions

Z =Wi(O)/W(O) may become very large, making the displacement vector

quite significant. Indeed, the apparent center may jump entirely outside
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the target cluster, and its location may fluctuate erratically when the

cluster's orientation or configuration is changed. In early radar

experience, this effect was often encountered when an aircraft target,

which can be regarded as a cluster of point scatterers, performed rapid

maneuvers or reacted to turbulent air. The effect may have first been
attributed to brief flashes of specular radar reflection at different

positions on the aircraft caused by rotatirj., thus explaining the use of

the term glint. Theoretical analyses reute this explanation, however,

revealing that the effect actually occurs ,,,,n the received wave is

weakest.

In summary, for the case of a distant cluster of N targets, the

phase gradient of the total field at the origin points in the direction

of the vector

Re{U} =. Xiui , (A.16)

where ui is the unit vector pointing toward the ith component target and
the X is the real part of the complex ratio of its contributed field to

the total field at the origin, with the Xi's obeying z Xi = 1. The

vector Re{U} defines the apparent direction of the target cluster, i.e.,

the direction normal to the incident phase front. It is clear from

Eq. (A.16) that the vector Re(U} will be attracted toward any exception-

ally strong component of the cluster, and will at least point toward the
interior of the cluster unless there is enough destructive interference

of the waves that the glint phenomenon intrudes.

Consider which apparent directions are theoretically possible for a

target cluster of a given geometry if we permit the phase and amplitude

contributed by each component to be varied independently. We observe
• ~that, given any numbers ai that have a positive sum S, we could theo-

retically adjust the phase and amplitude of each target's wave to give

.Wi(O)=ai. Then W(O) - E Wi(O) = S, and Xi=ai(O)/S. The apparent
direction is that of the vector Re{Ur= Sl i ai. We thus conclude that

8 i
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the apparent direction can correspond to any linear combination of the

ui's, provided the weighting coefficients have a positive sum. This con-

clusion is almost, but not quite, equivalent to saying that the apparent

direction can lie anywhere in the subspace spanned by the u 's. For a

two-target cluster, the apparent direction can be anywhere in a half-

plane containing the cluster whereas for a three-target cluster it can

be anywhere in a half-volume which contains it. As an example, consider

a two-target cluster. Although it may seem that there are four indepen-

dent parameters to deal with, namely the real and imaginary parts of

WY(O) and W2 (O), it is really only necessary to consider XI=Re{WI(O)).

The phase gradient is 2nf 0/cxRe{U}, and Re{U)=Xlu 1 X2u 2 =u2 +Xl(u 1 -u2 ),

since X +X2 =1. So the apparent direction is that of a vector whose end

point lies on the straight line passing through the end points of the

unit vectors u, and u2 that point toward the two component targets. If

X, and X2 are both positive, then that vector lies between u1 and u2.

but if the waves destructively interfere, i.e., if X1 and X2 have

opposite signs, then the vector's end point may lie elsewhere along the

line. Notice that the phase gradient is of largest magnitude when its

deviation is greatest, and when the destructive interference of the

waves is most severe. Although this example illustrates that extreme

deviations in apparent directions of a target cluster are poisible, they

are not necessarily probable. The use of the parallelogram sketching

method as described in the main text of this report may be of value in

predicting such effects.

The perturbations in the direction of the phase gradient are

symptoms of "kinks" in the phase fronts that radiate from the cluster.

Since they occur at points where destructive interference takes place,

they must be aligned with the "null" directions in the directivity pat-

tern of the cluster. The target cluster may be regarded as a trans-

mitting array having an unusual shape. Figure A.1 shows phase fronts

emanating from a two-target cluster with three-wavelength spacing, in

which the emanated waves are of almost equal strength but are driven

1800 out of phase. Significant perturbations in the wave fronts are

seen at only eight specific aspect angles. (Destructive interference
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also takes place at the end-fire angles, but without any'attendant

distortion in the phase front.) Note, however, that in the case of

active sonar or radar illumination from a fixed direction, a simple
rotation of the cluster does not produce an identical rotation of the

kink pattern. The actual result is made more complicated by the changing

phase relationship of the field incident upon the target components.

Extensive measurements of the glint properties of specific cluster geom-

etries (e.g., aircraft) have been performed in radar laboratories.

The treatment given in this appendix has used vectors rather than

coordinate angles to represent target directions, but it may readily be

verified that the bearing angle, relative to any "horizon," of the vector

Exiui, where the ui's are almost collinear unit vectors and the numbers

Xi sum to unity, is given to first order by z Xiei where ei is the bearing

angle of ui. For the case of interest, Xi=R {Wi(O)/W(O)} so the apparent
bearing angle of the target cluster e is given to first order by
/c

!i ec = Rej W-- i Re Wi(O) (A.17)

i

This expression is almost the same as that given in Eq. (79) for the

sensing ratio used in monopulse radar, repeated here for convenience,

R = .(A.18)• RQ2 ,i

The two formulas are, in fact, equivalent for a small cluster near

broadside. Recall that the R's measure the bearing angles in R units,

which, for targets near broadside, give a linear measure of angle, and

the constant of proportionality cancels in numerator and denominator.

Furthermore, if the cluster is small with respect to the undulations of
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the beam pattern of the even beamformer of an odd-even pair, then

Q2 ,i" K2 (ec)Wi(O)s where K2 (ed) is the even directivity pattern function
evaluated in the direction of the cluster, and this factor also cancels
in numerator and denominator. The conclusion is that an odd-even beam-
former pair perceives the cluster to lie in the direction of the phase
gradient, perpendicular to the incoming phase front. The same conclu-
sion applies to monopulse radar, as has been noted in the literature. 10 ' 15

8
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